
NASA MARSHALL SPACE FLIGHT CENTER

Simulink Code Generation
Tutorial for generating C code from Simulink

Models using Simulink Coder

José Carlos Molina Fraticelli

4/25/2012

Contents

1. Introduction ... 3

2. Good Programming Practices in Simulink .. 4

3. Choosing Variable Data Types .. 6

4. Hardware Implementation data type information .. 7

5. Naming Standards.. 7

6. Creation of practice model for code generation .. 8

7. Preparing practice model for code generation ... 17

8. Compiling and Executing generated code ... 29

9. Comparing output of MATLAB with that of the generated code ... 36

References ... 37

Appendix A Hardware Implementation Table .. 38

1. Introduction	

This document explains all the necessary steps in order to generate optimized C code from
Simulink (Ref. [2]) Models. This document also covers some general information on good
programming practices, selection of variable types, how to organize models and subsystems, and
finally how to test the generated C code and compare it with data from MATLAB (Ref. [1]).

(NOTE: This guide was prepared using MATLAB/Simulink Ver. R2011b (Ref. [1]).)

2. Good Programming Practices in Simulink	

Below are some guidelines to follow when creating Simulink (Ref. [2]) Models:

 Create bus objects for subsystems with many outputs and inputs. It makes organizing a
model simpler by requiring less cabling and also makes management of the data
contained in the bus easier when debugging as errors usually show up in a single location.

 Avoid using Mux blocks to create Bus signals. Always use a Bus Creator blocks.

 Avoid Crossing Cables when possible: There are a variety of ways to avoid crossing
cables which can make debugging Simulink (Ref. [2]) models complicated. Some of
these include: Organizing Subsystem Inputs to match cabling going into the subsystem,
Goto and From blocks, Bus Creator blocks, Bus Selector blocks, among others.

 Determine variable types ahead of time. Simulink (Ref. [2]) defaults all data types to 64-
bit doubles by default. This can sometimes be a problem for code generation as not all
targets can support these types of variables and it can be hard to change these once a
model is created. This will save a lot of time trying to find problematic typecasts.

 Use MATLAB (Ref. [1]) structures when working with Bus Signals.

 Determine whether a model is a sub-function or a subsystem.

 Avoid Algebraic Loops. They are problematic for code generation as stated by
Mathworks. If the algebraic loop cannot be avoided use a Unit Delay Block to break up
the loop. (NOTE: Verify that adding this block has not changed the output of the model.)

 Avoid using different sampling times between models. This is not supported by code
generation.

 Avoid using variable-step solvers. The only valid solver for code generation is the Fixed
Step Solver with a discrete time step.

 Build models from the ground up with code generation in mind.

 Test models as a standalone piece both in simulation and in the generated code and
ensure it is working before adding additional models.

 Avoid using equal names for buses, data, constants and models. This can cause serious
problems with code generation. Use a naming standard to clearly define what every
object is or isn’t.

 Rename models such as “Foo One Model”; to Foo_One_Model. This will help avoid
problems with code generation.

 If a model name is too long try shortening it. Model names should not exceed 20
characters.

 Align models and objects that are part of the model using the alignment tools available in
Simulink (Ref. [2]) these can be accessed by selecting two or more model objects and
selecting align blocks. This can help clean up models immensely

 Make sure the warning indicator on MATLAB (Ref. [1]) function blocks is green. Try to
fix all warnings pointed to by this indicator. Also always add the %#codegen pragma
directive below the function name declaration and before any code.

 Don’t use Goto and From blocks between different models. Use a signal line instead.

 Avoid the use of extremely memory intensive blocks such as ‘Fuzzy Logic controllers’ if
generating code for embedded platforms such as microcontrollers; as the generated code
will not fit in the stack due to the high amount of floating point variables required.

 Avoid excessive unnecessary variables. Memory is at a premium in embedded hardware
as opposed to a desktop computer.

 Use consistent signal names. This can help ease debugging immensely.

 Align all inputs to the left of the model and all outputs to the right of the model. This can
help find problematic inputs/outputs faster.

3. Choosing Variable Data Types	

In order to determine the correct data type for a variable one must determine what that variable
will be used for. Simulink (Ref. [2]), by default, will generate all variables as 64-bit doubles.
This can cause problems for embedded platforms with a low memory footprint such as
microcontrollers which is where generated code is usually targeted to. Below are some tips in
order to determine which variable type is viable for each action:

 boolean: If the variable is to be used as a ON/OFF switch then this variable type should
be used

 int8: If the variable does not exceed 8 bits and is a character then this variable type
should be used

 int16: If the variable does not exceed 16 bits and is an integer then this variable data type
should be used

 int32: If the variable does not exceed 32 bits and is an integer then this variable data type
should be used

 single: If the variable is a single precision floating point number then this variable data
type should be used

 double: If the variable is a double precision floating point number then this variable data
type should be used. (NOTE: This is the default variable type for Simulink (Ref. [2]))

 If the variables to be defined contain many elements then a structure must be created to
house these elements. A Bus must be created from said structure and then used as the
data type of the variable.

4. Hardware Implementation data type information

Below is a table listing device specific information for Hardware Implementation of the
Simulation and Generated code. This information is set in the Hardware Implementation pane
located in the Simulation Configuration Parameters:

Device
vendor /
Device
type

Number of bits Largest atomic size Byte
ordering

Rounds
to

Shift
right

char short int long native int float

ARM Compatible

ARM
7/8/9/10

8 16 32 32 32 Long Float x x x

Microchip

dsPIC 8 16 16 32 16 x x Little Endian Zero Set

Texas Instruments

MSP430 8 16 16 32 16 x x Little
Endian

Zero Set

Table 1: Hardware Implementation Partial
(NOTE: For a complete Hardware Implementation table refer to Appendix A.)

5. Naming Standards

To remain consistent on which object is what, and also to make debugging of problems easier, it
is important to establish a naming standard. This naming standard must be applied to models,
constants, variables and buses. An example of this standard is listed below and can be used as is
or with some modifications if required:

 If the object in question is a model then the name of that model should be in the form of:
“Name_Model”

 If the object in question is a constant then the name of that constant should be in the form
of: “Name_Constant”

 If the object in question is a bus then the name of that bus should be in the form of:
“Name_Bus”

 If the object in question is a signal then the name of that signal should be in the form of:
“Name_Signal”

 If the object in question is a function then the name of that signal should be in the form
of: “Name_Func”

 If the object in question is a subsystem input then the name of that input should be in the
form of: "Name_Input"

 If the object in question is a subsystem input then the name of that input should be in the
form of: "Name_Output"

6. Creation of practice model for code generation

In this section a new practice model will be created in order to demonstrate the necessary steps to
do successful code generation from any Simulink (Ref. [2]) model.

Open up MATLAB (Ref. [1]) and type the ‘buseditor’ command on the command window in
order to access the Bus Editor.

Bus Editor GUI:

Once here click on File > Add Bus, (or alternatively Ctrl+B), while having the Base Workspace
selected. A new Bus Object will be created in the MATLAB (Ref. [1]) workspace. Rename this
Bus Object to Inputs by modifying the Name Field in the Bus Editor:

Click Apply at the bottom of this window.

Now add two new elements to this Bus by going to File>Add/Insert Element (or alternatively
Ctrl+E) while having this Bus Object selected. These elements will be called Input_A and
Input_B respectively and will be of type int32:

Now repeat the previous process for the Outputs Bus but this time add five elements sum of type
int32, sub of type int32, mul of type int32, div of type double, and sum_gain of type int32. Once
finished the Bus Editor Window should contain the following objects:

Go back to the workspace and write the following command in the command window: ‘gain =
int32(1)’. You should see the following now:

Now that the workspace contains all necessary bus objects and variables with their defined data
types proceed to create a new model for Simulink (Ref. [2]) by going to File>New>Model at the
top toolbar:

Now this new model should be open:

Bring up the Simulink (Ref. [2]) Library Browser and add the following blocks to the model:

 3 Bus Creator Blocks

 3 Constant Blocks

 7 Bus Selector Blocks

 2 Display Blocks

 5 MATLAB (Ref. [1]) Function Blocks

 1 Model Info Block

Once these are added to the model organize them in the following manner:

Make sure that the Output data types of the Input_A, Input_B and gain constants are of type
int32. (NOTE: Set the gain constant value to ‘gain’)

Open the first of the MATLAB (Ref. [1]) Function blocks and write the following code inside:

sum_func:

For the next four blocks write the following code in order from top to bottom:

sub_func:

mul_func:

div_func:

sum_gain_func:

Connect the model as shown below:

(NOTE: Make sure the First Bus Creator on the left has a data type of ‘Bus: Inputs’ and that the
following Bus Creator to the right has a datatype of ‘Bus: Outputs’ as can be seen on the above.
Also be sure to label all signal cables with their corresponding names)

Configure the Model Info Block with the following tokens then click Apply and OK:

Run the model and look at the output seen on the display block; if the Input Constant values of
Input_A and Input_B are set to 1 and 2 respectively then the output of the simulation should be
	݉ݑ ൌ 		3, 	ܾݑݏ ൌ 	െ1, 	݈ݑ݉ ൌ 	2, ௚௔௜௡݉ݑݏ ൌ 	ݒ݅݀	݀݊ܽ	4	 ൌ 	0.5 :

Select this section of the model and right click it. Afterwards select Create Subsystem from the
popup menu:

The model should now look as follows. Save this model as CodegenT_Model:

7. Preparing practice model for code generation

Now that the CodegenT_Model is finished and running it is time to prepare it for code
generation. To start right click on the Subsystem Model and select Subsystem Parameters:

Check the box that is labeled "Treat as atomic unit"; click Apply then OK. This will change the
borders of the Subsystem to a bold line indicating that the system is now atomic and will execute
as a single unit inside the simulation. Systems must be atomic in order to be generated as re-
usable C functions using Real-Time Workshop. The Subsystem model should now look as
follows (NOTE: Changing a Subsystem to an atomic representation can change simulation
output; always verify that the simulation is still working before generating code from it.):

Rename the Subsystem model to Calc_Test_Model:

Once again right click on the model and open the Subsystem Parameters, go to the Code
Generation Tab which is enabled when the Subsystem is declared as atomic and choose the
"Reusable Function" option on the "Function packaging" dropdown list. Afterwards two more
dropdown lists will appear "Function name options" and "File name options"; For the first
dropdown list choose "User Specified" and write the following name in the provided text space
"calc_functions". Afterwards choose the "Use function name" option for the "File name options"
dropdown list. Finally click Apply then OK to close the subsystem parameters:

Next go to the top toolbar in Simulink (Ref. [2]) and click on Simulation > Configuration
Parameters. The following window will open:

These are all the available properties for the simulation. For code generation only some of these
properties need to be modified. To start off set the Solver pane options as shown below:

Next in Data Import/Export pane change the signal logging name to BusData (NOTE: Signal
logging can be used for debugging and generating files from simulation output data):

For the Optimization pane change the Application lifespan setting to inf:

Jump over to the Hardware Implementation pane and set the settings of this pane as outlined in
Table 1 based on the Hardware for which the code will be generated (NOTE: For this example
Unspecified (32-bit generic) will be used):

Go to the Code Generation Pane and select the following options:

Set Objectives Pop-Up to the desired objectives:

Make sure to select the correct target file based on the desired target. For this example ert.tlc
Embedded Coder will be used.

Select the Report Pane and set the following options:

Go to the Interface pane and select the following options:

Make sure the "Generate reusable code" checkbox is checked in this pane.

Go to the Code Style pane and check all checkboxes. This is done to set the coding style as
humanly readable as possible for code generation:

Next go to the Templates pane and set the following options:

In this pane source code generation templates may be selected. This requires advanced
knowledge of tlc language. Information on tlc language and files can be found in the MATLAB
(Ref. [1]) help window.

Once again return to the Code Generation pane; click Apply then click the generate code button.
A model check procedure will now start to verify that all settings are correct for code generation:

Select the first warning symbol on the top of the Code Generation Objectives list and then click
on Modify Parameters:

This will set the conflicting parameters to the correct settings for code generation. Once this is
done click on Run This Check will in the same window:

Do the same procedure for the remaining warnings if necessary based on individual model
configurations. In the case of this simple example it is not necessary to fix all warnings as they
are only there to prevent what could be future issues but not really simulation errors.

Once done here go back to the Configuration Parameters and change the "Check model before
generating code" dropdown list to the "Off" setting in order to bypass the model advisor. Click
Apply then OK to save these changes then close the Configuration Parameters:

Right click on the Calc_Test_Model Subsystem and go to Code Generation > Build Subsystem.
If there are not conflicts the following window should appear. (NOTE: It is possible an error
message might pop-up due to an unset or incorrectly set configuration parameter option. This is
normal and can be easily fixed by changing the conflicting parameter):

This window contains all workspace constants that are to be used in the generated code and offer
storage options for the generated code. In the case of this example the variable gain can be left as
"Inlined". Click on Build and the code generation process will start.

The code generation progress should be shown in the command window as seen below:

If all goes well the following Code Generation Report should show up:

From here the generated code can be evaluated and can also be traced back to the Simulink (Ref.
[2]) Model. For more information on the Code Generation Report consult the MATLAB (Ref.
[1]) help window.

Now on the current MATLAB (Ref. [1]) path there should be two folders called
Calc_Test_Model_ert_rtw and slprj respectively:

These folders contain all the generated code from the Simulink (Ref. [2]) Model; copy and paste
these folders to any desired location for the next section of the tutorial where the code will be
compiled and executed.

8. Compiling and Executing generated code

Now that the code is generated the next step is to test the code by compiling it and creating an
executable to run it. For this section of the tutorial a C IDE and compiler are required. This
tutorial will use Bloodshed Software’s Dev-C++ IDE [2] but these steps can be done in any IDE
with any compiler. Dev-C++ (Ref. [3]) can be downloaded from Bloodshed Software’s webpage:
http://www.bloodshed.net/download.html

Download the Dev-C++ (Ref. [3]) setup and install it by following the on-screen prompts:

Once finished with the installation open up the Dev-C++ (Ref. [3]) IDE:

Go to the top toolbar then go to File > New > Project, afterwards select the following options:
Empty Project, check C Project and Name the project Calc_Test_Generated_Model:

Click on Ok and a Prompt will come up asking for a location to save the project. Choose any
desired location. (NOTE: It is recommended to create a new folder for this project)

After creating the project the left hand tab will contain a root folder with the name of the project.
This is where all source code will be located:

Now drag the copies of the Calc_Test_Model_ert_rtw and the slprj folders into the
Calc_Test_Generated_Model project folder in the previously selected location:

Next go to the top toolbar then go to Project > Project Options then in the Pop Up window go to
the Directories Tab then inside of it go to the Include Directories Sub Tab. Add the following
paths to the include directories: ".\Calc_Test_Model_ert_rtw" and ".\slprj\ert_sharedutils"
(NOTE: replace the dot with the absolute path to the Calc_Test_Generated_Model folder):

Right click on the Calc_Test_Generated_Model folder on the left hand tab and then click on
"Add Folder" call the folder Calc_Test then click OK:

Add an additional folder to the top folder called utilities:

Right click on Calc_Test and then click on "Add to project". Browse to the
Calc_Test_Model_ert_rtw folder then add all .c and .h files excluding the ert_main.c. Repeat this
for the utilities folder by going to slprj\ert_sharedutils. Finally right click on the top
Calc_Test_Generated_Model folder and add the ert_main.c from the Calc_Test_Model_ert_rtw
folder:

After adding everything the folders should contain the following:

Go to the top toolbar then click on Execute > Compile & Run and if there are no problems the
following output should appear:

Now that the code is up and running; open the ert_main.c and make the following modifications
to the main function:

#if 0

 printf("Warning: The simulation will run forever. "

 "Generated ERT main won't simulate model step behavior. "

 "To change this behavior select the 'MAT-file logging' option.\n");

 fflush((NULL));

 while (rtmGetErrorStatus(0) == (NULL)) {

 /* Perform other application tasks here */

 }

 #else

 int32_T Input_A = 1;

 int32_T Input_B = 2;

 while(1)

 {

 /* Pass input data */

 Calc_Test_Model_U_Input_A = Input_A;

 Calc_Test_Model_U_Input_B = Input_B;

 /* Run Subsystem */

 Calc_Test_Model_step(&Calc_Test_Model_DWork, Calc_Test_Model_U_Input_A,

 Calc_Test_Model_U_Input_B, &Calc_Test_Model_Y_Out1);

 /* View Output */

 printf("Input_A: %ld , Input_B: %ld\n\n"

 "sum: %ld\n\n"

 "sub: %ld\n\n"

 "mul: %ld\n\n"

 "div: %lf\n\n"

 "sum_gain: %ld\n\n"

 ,

 Calc_Test_Model_U_Input_A,

 Calc_Test_Model_U_Input_B,

 Calc_Test_Model_Y_Out1.sum,

 Calc_Test_Model_Y_Out1.sub,

 Calc_Test_Model_Y_Out1.mul,

 Calc_Test_Model_Y_Out1.div,

 Calc_Test_Model_Y_Out1.sum_gain);

 Input_A++;

 Input_B++;

 sleep(1000);

 }

 #endif

The modifications to the code add the Inputs A and B initialized to 1 and 2 respectively. Then an
infinite while loop is started. Inside this loop the Inputs are passed to their corresponding
structure elements located in the input variables for the model step function denoted by the _U
(e.g. Calc_Test_Model_U_Input_A), next the step function, denoted _step (e.g.
Calc_Test_Model_step) is called to run the model. After calling the step function the values are

now in the output data structure denoted by the _Y (e.g.:Calc_Test_Model_Y_Out1) and then
these can be accessed globally for any purpose.

The output data can then be viewed with the printf function as shown below:

9. Comparing output of MATLAB with that of the generated code

Once the code is generated and running there is a couple of ways to determine if the output is
correct:

 Simple observation of the simulation output can be used in the case of simple calculations
as those carried out in this example.

 In the case of more complex calculations a text file can be generated and plotted to
compare to output data from the simulation model.

 Text files can be loaded into MATLAB (Ref. [1]) then the difference between these two
files can be plotted showing differences in output for each sample.

References

Computer Software

[1] MATLAB, The MathWorks, Inc., Software Package, Ver. R2011b, Natick, Massachusetts,
2011.

[2] Simulink, The MathWorks, Inc., Software Package, Ver. R2011b, Natick, Massachusetts,
2011.

[3] Dev-C++, Bloodshed Software, Software Package, Ver. 5, 2005.

Appendix A Hardware Implementation Table

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) matches the value of int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device
vendor /
Device type

Number of bits Largest
atomic size

Byte
ordering

Round
s to

Shift
right

cha
r

shor
t

int long native int float

Generic

Unspecified
(assume 32-
bit Generic)
(default)

8 16 32 32 32 x x Unspecifie
d

x Set

Custom x x x x x x x x x x

16-bit
Embedded
Processor

8 16 16 32 16 x x x x Set

32-bit
Embedded
Processor

8 16 32 32 32 x x x x Set

32-bit Real
Time
Simulator

8 16 32 32 32 x x x x Set

32-bit x86 8 16 32 32 32 x x Little Zero Set

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) matches the value of int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device
vendor /
Device type

Number of bits Largest
atomic size

Byte
ordering

Round
s to

Shift
right

cha
r

shor
t

int long native int float

compatible Endian

8-bit
Embedded
Processor

8 16 16 32 8 x x x x Set

MATLAB
Host
Computer

8 16 32 Host
specifi
c value
(32 or
64)

Host
specifi
c value
(32 or
64)

x x Little
Endian

x Set

AMD

K5/K6/Athlo
n

8 16 32 32 32 x x Little
Endian

x Set

ARM Compatible

ARM
7/8/9/10

8 16 32 32 32 Lon
g

Float x x x

ARM 11 8 16 32 32 32 Lon
g

Doubl
e

x x x

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) matches the value of int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device
vendor /
Device type

Number of bits Largest
atomic size

Byte
ordering

Round
s to

Shift
right

cha
r

shor
t

int long native int float

ARM Cortex 8 16 32 32 32 Char None x x x

ASIC/FPGA

ASIC/FPGA NA NA N
A

NA NA NA NA NA NA NA

Analog Devices

Blackfin 8 16 32 32 32 Lon
g

Doubl
e

Little
Endian

Zero Set

SHARC 32 32 32 32 32 Lon
g

Doubl
e

Big Endian Zero Set

TigerSHARC 32 32 32 32 32 Lon
g

Doubl
e

Little
Endian

Zero Set

Atmel

AVR 8 16 16 32 8 x x Little
Endian

Zero Set

Freescale

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) matches the value of int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device
vendor /
Device type

Number of bits Largest
atomic size

Byte
ordering

Round
s to

Shift
right

cha
r

shor
t

int long native int float

32-bit
PowerPC

8 16 32 32 32 Lon
g

Doubl
e

Big Endian Zero Set

68332 8 16 32 32 32 x x Big Endian x Set

68HC08 8 16 16 32 8 x x Big Endian x Set

68HC11 8 16 16 32 8 x x Big Endian x Set

ColdFire 8 16 32 32 32 x x Big Endian Zero Set

DSP563xx
(16-bit mode)

8 16 16 32 16 x x x x Set

HC(S)12 8 16 16 32 16 x x Big Endian x Set

MPC52xx,
MPC5500,
MPC55xx,
MPC5xx,
MPC7400,
MPC7xxx,
MPC82xx,
MPC83xx,

8 16 32 32 32 Lon
g

Doubl
e

x Zero Set

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) matches the value of int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device
vendor /
Device type

Number of bits Largest
atomic size

Byte
ordering

Round
s to

Shift
right

cha
r

shor
t

int long native int float

MPC86xx,
MPC8xx

MPC85xx 8 16 32 32 32 Lon
g

Float x Zero Set

S12x 8 16 16 32 16 x x Big Endian x Set

Infineon

C16x, XC16x 8 16 16 32 16 x x Little
Endian

Zero Set

TriCore 8 16 32 32 32 x x Little
Endian

x Set

Intel

8051
Compatible

8 16 16 32 8 x x x x Clea
r

x86/Pentium 8 16 32 32 32 x x Little
Endian

x Set

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) matches the value of int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device
vendor /
Device type

Number of bits Largest
atomic size

Byte
ordering

Round
s to

Shift
right

cha
r

shor
t

int long native int float

Microchip

PIC18 8 16 16 32 8 x x Little
Endian

Zero Set

dsPIC 8 16 16 32 16 x x Little
Endian

Zero Set

NEC

V850 8 16 32 32 32 x x x x x

Renesas

M16C 8 16 16 32 16 x x Little
Endian

x x

M32C 8 16 x 32 x x x Little
Endian

x x

R8C/Tiny 8 16 16 32 16 x x Little
Endian

x x

SH-2/3/4 8 16 32 32 32 x x x x x

Key: float and double (not listed) always equal 32 and 64, respectively

pointer (not listed) matches the value of int

Rounds to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Device
vendor /
Device type

Number of bits Largest
atomic size

Byte
ordering

Round
s to

Shift
right

cha
r

shor
t

int long native int float

SGI

UltraSPARC
IIi

8 16 32 32 32 x x Big Endian x Set

STMicroelectronics

ST10/Super1
0

8 16 16 32 16 x x Little
Endian

Zero Set

Texas Instruments

C2000 16 16 16 32 16 Int None x Zero Set

C5000 16 16 16 32 16 Int None Big Endian Zero Set

C6000 8 16 32 40 32 Int None x Zero Set

MSP430 8 16 16 32 16 x x Little
Endian

Zero Set

TMS470 8 16 32 32 x x x x x x

Table 2: Hardware Implementation Complete

